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1. Introduction 
WHEN a solid or a liquid specimen is placed between the poles of a 
permanent magnet and subjected to microwave radiation, power may be 
absorbed by the specimen at a particular frequency or set of frequencies 
which depend on the strength of the permanent field. If the magnetic 
field is about 10,OOO gauss, and resonant absorption occurs at frequencies 
of the order of 1 cm.-l, then it is safe to attribute the resonance to unpaired 
electrons. This phenomenon has been variously termed “paramagnetic 
resonance”, “electron magnetic resonance”, and “electron spin resonance”. 
The first name emphasises that pure diamagnetic substances exhibit no such 
resonance; the second, that it is the magnetic component of the micro- 
wave field which induces the observed transitions; and the third, that it is 
the spins of the unpaired electrons which make them susceptible to the 
applied magnetic field. 

As a rule, electron-resonance measurements are made in dilute solution, 
solid or liquid, to minimise interference between neighbouring para- 
magnetic units. Though organic free radicals often exhibit electron 
resonance in liquid solution, it is relatively unusual for transition-metal 
compounds to do so. To obtain resonance spectra from such compounds 
it is usually necessary to grow and study dilute single crystals. It is also 
convenient to be able to work at very low temperatures, where line- 
broadening effects are reduced. Crystal studies have the compensating 
advantage that one can observe how the resonance spectrum depends on the 
orientation of the crystal in the external magnetic field; if the crystal 
structure is known the orbitals of the unpaired electrons may thus be 
identified; if not, electron resonance may provide a useful supplement to 
crystallographic studies. Finally, if magnetic nuclei are present it may be 
possible to observe “hyperfine” structure in the electron-resonance 
spectrum, and from this to determine how far the magnetic electrons are 
delocalised into the orbitals of neighbouring atoms. 

For these reasons the study of inorganic crystals by electron resonance 
is a tool of considerable utility for the student of molecular structure. It is 
therefore of advantage for the inorganic chemist to know something of the 
theory and practical applications of the technique. There are many good 
reviews of the subject, some of which go deeply into the basic theory,l.2 
while others give comprehensive accounts of the applications of electron- 

B. Bleaney and K. W. H. Stevens, Reports Progr. Phys., 1953,16,108. 
K. D. Bowers and J. Owen, Reports Progr. Phys., 1955,18,304. 
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resonance spec t ros~opy .~~~  In this article we have chosen to expound the 
theory by the detailed consideration of one or two representative examples, 
in the hope that the reader may then feel able to tackle more confidently 
the more advanced papers. We shall find it necessary to use the methods of 
quantum mechanics, and to quote general results without proof; but we 
shall not assume any previous knowledge of the theory of electron reso- 
nance. 

A few words on notation may be helpful at this point, as it is not in all 
respects identical with that used in general chemical work. First, as is 
customary, we shall distinguish vectors from scalars by printing the former 
in bold type and the latter in italic type. Thus H, the magnetic field, is a 
vector, whereas H,, its z-component, is a scalar quantity. Secondly, we 
shall place a circumflex over every symbol (whether a vector or a scalar) 
which stands for an operator. Thus and S^(which are both vectors) 
denote the angular momentum operators associated with the orbital 
motion and the spin of an electron or group of electrons, measured in 
units of h/272, while xz and s”, are the (scalar) z-components of these 
operators. By contrast, L, S, ML and Ms are quantum numbers used to 
label the various electronic states. Thus the symbol IL,ML) denotes a 
state for which 6 has the eigenvalue L(L + 1) and has the eigenvalue 
ML (which can take any one of the 2L + 1 values -L, . . . , +L). 
Likewise, I M L , M ~ )  is an eigenstate of both and $, with eigenvalues 
ML and Ms respectively (the numerical values of L and S having been 
previously specified). Finally, the Bohr magneton /3 has the value eh/4nrnc, 
where -e and m are the charge and mass of the electron, c being the 
velocity of light. 

2. General theory 
An electron interacts with an external magnetic field in two ways, by 

virtue of its charge and by virtue of its spin. A charged particle revolving 
round a fixed point is equivalent to a current flowing in a loop; likewise, 
an electron of charge -e with angular momentum L interacts with a 
magnetic field H by virtue of its orbital motion. This interaction is 
-H.&, where is called the orbital magnetic moment and is equal to 
-@, where /I is the Bohr magneton. In addition, the spin Kconfers on 
the electron a magnetic moment 

and this also interacts with the external magnetic field H. The total inter- 
action is therefore 

- H.(FL + c) = pH.(% + 2s) 

A 

A A 

ps = -2ps 

D. J.  E. Ingram, “Spectroscopy at Radio and Microwave Frequencies”, Butter- 

J. W. Orton, Reports Progr. Phys., 1959,22,204. 
woI;ths Scientific Publications, London, 1955. 
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The simplest possible situation is that of a single electron in an s orbital, 
as in the hydrogen atom. Here there is no orbital angular momentum, so 
the interaction is simply 2PH.Kwhich becomes 2/3Hzz, if the z direction is 
chosen as that of the permanent field. The field H ,  thus quantises the z 
component of the spin, whose eigenvalues Ms are well known to be st; and 
- for a single electron. The magnetic energies of the two correspond- 
ing levels are therefore PHZ, -pH, and the separation between them may 
be written as gPH, where the quantity g is called the spectroscopic splitting 
factor and has the value 2 (more precisely 2.0023). We have here dropped 
the suffix from H ,  to stress the obvious fact that the Zeeman splitting is 
independent of the direction of the applied field; we may say that g is 
isotropic. In crystals, however, isotropic g values are the exception rather 
than the rule, as we shall see in a moment. 

Having split the spin levels apart by the field H,, we may now induce 
transitions between them by applying an oscillating magnetic field 

H,' cos 2nvt 

in a perpendicular direction. This is because the resulting perturbation 

2/IH,'$ cos 2nvt 

involves S,, which connects, i.e., has matrix elements between, eigenstates 
of ŝ , differing in eigenvalue Ms by 1. The selection rule is therefore, in this 
example, 

AMS = & 1 
and the resonance condition is, of course, 

hv = gPH 

The frequency of resonance is thus proportional to the magnetic field, 
and vice versa. In practice it is more convenient to vary the magnetic field 
than to vary the frequency of the microwave source, so the spectrum is 
usually presented as a relation between absorption and magnetic field for a 
given microwave frequency; for instance the width of a resonance line is 
normally quoted in gauss. 

Before passing on to consider the effects of orbital motion, which are of 
crucial importance in crystal studies, we may interpose a word about 
hyperfine structure. Atomic hydrogen actually shows two electron- 
resonance lines and the explanation of this is that the proton, like the 
electron, has a spin of magnitude $, which confers on it a magnetic moment 
of about Bohr magneton. This interacts both with the external field 
and with the magnetic field of the electron, the latter interaction being a 
good deal larger than the former. If the proton spin is denoted b y x  the 
total magnetic interaction takes the form 

g/3H.Z + &.r+ BH.2 

A 
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where B depends on the magnetic moment of the proton and A depends 
also on the probability of the electron's being at the position of the proton. 
Again taking H to be in the z direction, we find that if H>>A/gP the 
eigenstates of this operator are states for which Ms and MI are both good 
quantum numbers, having the alternative values + and -6. Fig. 1 shows 
the resulting set of four energy levels (not to scale). Neglecting the term 

9pffz+ !g A+ 6 H z  

FIG. 1. Nuclear hyperfine energy levels of a 1s hydrogen atom in a magnetic field. 

BH, in comparison with A ,  we see that the selection rules ~ M s  = kl, 
AM, = 0 allow the two transitions indicated, with energies g p H  -+ $A.  

The two members of the hyperfine doublet are therefore separated by an 
amomt A on the energy scale. Although such a simple discussion is seldom 
possible, it may be said that in general the appearance of hyperfine 
structure is clear evidence that the unpaired electron (or electrons) is 
interacting with one or more magnetic nuclei, either by direct contact as 
here, or through the magnetic field associated with its orbital motion. 

3. Spin-orbit coupling 
When an atom is placed in a chemical environment, the orbital motion 

of its electrons is strongly perturbed. To take an example: the isolated 
Ti3+ ion has a 2D ground term ( L  = 2, S = 3) which has a five-fold orbital 
degeneracy ( -L<ML< +L); but when the ion is placed in a chemical 
environment this degeneracy is partly lifted. Were the degeneracy com- 
pletely lifted, so that finally all of the five 3d orbitals had different 
energies, it would be found that the expectation value of L  ̂would vanish 
for each of them, and we should then say that the orbital angular momen- 
tum was completely quenched. Now there is a theorem due to Jahn and 
Teller5 which states that, if a symmetrical non-linear molecule is in an 
orbitally degenerate state, then it will always distort in such a way as to 
lift the degeneracy. Why, then, is the orbital angular momentum of an 
atom or ion not always completely quenched in a chemical environment? 

The answer is to be found in the phenomenon of spin-orbit coupling. 
Though this effect is usually insignificant in chemistry, it is vital to an 

H. A. Jahn and E. Teller, Proc. Roy. Soc., 1937, A ,  161,220. 
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understanding of electron resonance. In simple terms, an electron tends to 
align its spin anti-parallel to its orbital angular momentum; hence, if it 
has orbital angular momentum, this tends to be kept going by being 
weakly coupled to the spin; and if it has spin, this tends to generate 
orbital angular momentum. There is therefore a competition between the 
quenching effect of the ligands-the “crystal field’’-and the sustaining 
effect of the spin-orbit coupling. Were it not for spin-orbit coupling the 
orbital magnetic moment would be of no consequence in electron reso- 
nance, and we should always observe, without much interest, an isotropic 
g value of 2. 

In the free atom or ion the most important effect of spin-orbit coupling 
is to split apart the different members of a particular “Russell-Saunders 
term’’ such as 2D. Thus in Ti3+ the level 2D3/2, with 2 and antiparallel, 
is slightly more stable than 2D5/2, with z a n d 3  parallel. In considering only 
the levels which arise from a particular Russell-Saunders term it is 
sufficient to take the spin-orbit interaction to be of the form &.g, where 
the parameter his an energy which depends on the number and nature of 
the outer electrons (for example, n 3d electrons), and on the values of L 
and S for the term in question. h also depends very strongly on the atomic 
number of the ion, increasing roughly as the cube of the atomic number. 
Values of h for most of the ions of chemical interest are to be found in 
Condon and Shortley’s “Theory of Atomic Spectra”.6 They are mostly 
in the range 100-1,OOO cm.-l. 

4. The caleulation of g values 

When the ion is placed in a chemical environment, the orbital degeneracy 
characteristic of the free ion will, as already remarked, be partially lifted; 
but nevertheless the valency state of the bound ion may approximate 
quite closely to a mixture of states of the free ion, all of which arise from 
the same Russell-Saunders term. Thus in an octahedral environment the 
ground state of the Ti3+ ion, (2T2g), and its first excited state (2Eg), both 
arise from the 2D term of the free ion, other such terms probably making 
insignificant contributions. If the crystal field is very strong this is no longer 
quite true, but for the present exposition we shall assume it to be the case, 
and will therefore take the spin-orbit interaction to be of the same form 
as it is in the related Russell-Saunders term of the free ion. In order to 
make the situation clearer, we shall now work through two examples, 
to show how the observed resonance spectra are related to the spin-orbit 
coupling and crystal-field splitting parameters. 

(i) The Ti% ion in a tetrahedral environment. It is well known that if a 
transition-metal ion is placed in an environment with octahedral or tetra- 

* E. U. Condon and G. H. Shortley, “Theory of Atomic Spectra ”, Cambridge 
University Press, 1951, p. 197 (see also D. S. McClure, Solid State Phys., 1959, 9, 428). 
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hedral symmetry, the d orbitals are split into a group of three and a group 
of two by the electrostatic crystal field.' If the ion is tetrahedrally co- 
ordinated the orbital doublet lies below the orbital triplet as shown in 
Fig. 2, where we have indicated how a small tetragonal distortion- 

/ I 

I 

JA 

\ i  

Free Tetrahedral Tetragonal 
ion co-ordn. distortion 

FIG. 2. Splitting of the orbitals of the Ti3+ ion in a tetrahedralfield, with tetragonal 
distortion. 

actually a slight flattening of the tetrahedron-further splits the orbital 
doublet. (We shall not need to discuss how the upper triplet is split by this 
additional perturbation.) We have also indicated the explicit forms of the 
orbitals in terms of the complex 3d orbitals; IML) represents a 3d 
orbital with ML units of angular momentum around the z axis, which 
is taken to be the axis along which the tetrahedron is flattened. Some such 
distortion is to be expected from the Jahn-Teller theorem, and we are 
supposing that it is such as to make the orbital (0) the more stable.* 

We now fix attention on the lowest orbital and note that it contains a 
single electron in the ground state of the complex. If spin-orbit coupling is 
ignored, the ground state may be represented by the pair of symbols 
lo,&), lo,-&), where the pair of numbers in each "ket" represent the 

values of ML and Ms respectively, i.e., the eigenvalues of L ,  and S,. When 
spin-orbit coupling is taken into account, however, these expressions are 
modified slightly by the admixture of small amounts of states with different 
values of ML and M S .  

n n 

J. S. Griffith and L. E. Orgel, Quart. Rev., 1957, 11, 381. 
* The orbitals 10) and \It( 12) + I -2)) are actually the orbitals more commonly 

known as dz2 and dzs-yi. Of the other three orbitals d4(\2) - I -2>) is the orbital 
dzY, and I 1 ) and I - 1 > are the complex combinations z/+(d,, f idyz). But as we are 
dealing with angular momentum it is not convenient to use the more familiar real forms 
for all five d orbitals. 
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To calculate the admixing coefficients we use first-order perturbation 
theory. According to this theory, the perturbation hz% changes the state 
lo,$) into 

where the sum is over all other states IML,Ms) and the denominator is 
the difference in energy between the unperturbed state and the state which 
is being mixed with it. We must therefore have a look at the values of the 
matrix elements (ML,Ms 1AL.S @,T) and (ML,Ms 1hL.S lo,-+). 

First we note that the perturbation hc.g may be expanded in the form 

A n  

A- nn + cg, + C$) = +X(L+S- + LS+) +AL;g 
n n n A A n 

where ,!,, = L, & iL, and S, = S, & is, 

Secondly, we make use of standard formula: for the matrix elements in 
the last expression. It is a standard result that the only matrix elements of 
these types which do not vanish are the following: 

(ML + 1 IG IML> 

(MY + 1 I?+ IMS) 

( M L  - 1 IML> = ~ / [ L ( L  + 1) - ML(ML - 111 
(MS - 1 IS- IMS) 

= 1/[L(L + 1 )  - ML(ML + I ) ]  
2/[S(S + 1) - M s W s  + I)] 

.\/[S(S + 1) - MS(MS - l)] 

= 

n 

= 

<ML[L?IML) = ML 

< M S / X I M S )  = MS 
~n 

From these formula: we can see that the term &AL+S- mixes lo,&> with 
a little bit of [ 1,-+), but that &AL̂ _g cannot mix lo,&) with anything 
because M S  cannot have the value 3/2,  and AL,S, is also ineffective 
because when operates on lo,&) it multiplies it by the eigenvalue 
M L  = 0. The perturbed form of 10,;) is therefore 

nn 

lo,+,> + c [ I , -&)  = I"&"), say; 
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the admixing coefficient c is given by 
n A  

( I , +  IK.qo,a> - - g m - *  IL+S-- lo,+> 
c =  E(O,+) - E( l ,+ )  - A  

= - 0(/2A)<l I& 10) <-& Is? 19) 
= - ( h / 2 4 1 / ( 2  x 3 - 1 x O ) l / ( &  x ; - (-4) x +) 

= - 1/(3/2)h/A 

In a precisely similar way we can demonstrate that the unperturbed state 
I O,-+) becomes 

lo,-*> + c I-LO = I“-$”>, say, 

when the effect of spin-orbit coupling is taken into account. 
We now observe that the states called I”S”> and I”-+”> are strictly 

degenerate in the absence of a magnetic field, and constitute what is known 
as a Kramers doublet.s A magnetic field will, however, resolve this 
degeneracy, and we now determine the splitting produced by fields in the 
z or x direction. A field H ,  produces a perturbation /3Hz(C + 25;‘,), and 
we have to find the matrix elements of this between the states I ” & & ” ) ,  
in order to determine how they are mixed and to find the energy separation 
between the resulting pair of levels. 

First, (c + 2 z 2 )  has no matrix element between I”4”} and l”-$“} 
because the states IML,MS) are eigenstates of both 6 and g, and there 
are no such states common to I”&”) and l ” -~”) .  Hence only the diagonal 
elements are non-zero, and these are 

Hence if the field is applied in the z direction we obtain just the same split- 
ting, namely 2PH,, as we should if only the electron spin interacted with 
the field. We describe this situation by saying that 811 = 2, where the 
subscript II means parallel to the z axis. 

The situation is different, however, if the field is applied in the x direc- 
tion. Now the perturbation is PH,(L^, + 2$), which may be written 
PH,(+L+ + +c + ,!$ + K). This operator has no diagonal elements 
within the pair of states I”-+-”), since each member of the Kramers 
doublet comprises two terms which differ in both ML and MS. The off- 

H. A. Kramers, “Quantum Mechanics”, North-Holland Publ. Co., Amsterdam, 
1957, p. 384. 

n 
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diagonal elements, on the other hand, do not vanish, since each term in 
("ij") is connected with one (or both) in I"-+") through one of the 

operators L+, L-, S+, or S-. The two off-diagonal terms 

("&" I#3Hz(Tz + 2 g )  I"-&") and ("-4" I /3Hz(c + 2 s )  I"+") 

A h A  A 

are both equal to 

P f w O , &  IKlO,-&> + &C(O,4 IG l-1,8> + W-1,--& IL lo,-&>] 
= #3HX[I 3- &c(d6 -1- d6)] = /3Hz(1 - 3WA) 

The two states, therefore, split into their sum and their difference, with a 
separation 

2#3Hx(1 - 3h/A)  
and we describe this by saying that gl = 2(1 - 3h/A). 

Abragam and Prycee showed that the observable behaviour of this type 
of system could be described by what they called a "spin hamiltonian". 
The two splittings we have calculated, and the splitting which occurs if the 
field is applied in an arbitrary direction, are precisely what one would 
obtain if one ignored the orbital angular momentum and replaced its effect 
by an anisotropic coupling between the electron spin and the external 
magnetic field, of the form 

l3H.g.g = Pg,,HzS^, + jSg,(H& 3- 
Physically, the orbital angular momentum induced by the spin makes the 
latter easier to orient in some directions than in others, and this effect is 
what is represented by the spin hamiltonian. It may be noted that the axes 
of the g tensor must coincide with the symmetry axes of the system; thus 
we can use the observed anisotropy of the electron-resonance spectrum to 
determine the orientation of a paramagnetic unit in a crystalline lattice. 
An outstanding example of this was the determination of the orientations 
of the four haem groups in the haemoglobin crystal,1° discussed below. 

We work out this example 
as well as the previous one, because the directional effects are much more 
pronounced. The situation is as illustrated in Fig. 3. This time we consider 
the Jahn-Teller distortion to be a slight compression of the octahedron 
in the direction of one of its three-fold axes, which we take as the z axis. 
Such a distortion occurs, for instance, in the compound CsTi(SO,),, in 
which the site symmetry of the octahedrally co-ordinated Ti3+ ion is 
trigonal.ll In terms of the eigenstates of L,, namely /AIL), the orbitals 
then take the forms indicated in Fig. 3, the lowest being lo}, which is 
axially symmetrical about the z axis. 

(ii) The Ti- ion in an octahedral environment. 

A 

A. Abragam and M. H. L. Pryce, Proc. Roj .  SOC., 1951, A ,  205, 135. 
lo J. Bennett, J. F. Gibson and D. J. E. Ingram, Proc. Roy. SOC., 1957, A ,  240, 67. 
l1 B. Bleaney Proc. Phys. Soc., 1950, A ,  63, 407. 
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As in the previous example, the spin-orbit interaction mixes lo,+> 
with states involving I 1,-$), and mixes lo,-&) with states containing 
I-l,&). Now since 8 is much smaller than A ,  the mixing of 10) with 

the two states immediately above it will be much larger than with the two 

Free Octahedral Trigonal 
ion f i e l d  distort ion 

FIG. 3.  Splitting of the orbitals of the Ti3+ ion in an octahedralfield with a trigonal 
distortion. 

states at the top of the diagram. The result is that the perturbed levels take 
the approximate forms 

1 / ( 1  - c2) lo,+> + c [ d 5  1L-i) + 48 l-2,-$>1 

1 / ( 1  - c2) lo,-+> + C [ d &  1 - 1 9  8 )  - 1 / $ 1 2 9  &)I 
and 

where c is much larger than in the previous example. These states are split 
to different extents by magnetic fields in the z and the x direction; the 
corresponding g-values are found to be 

(8 - 3x12) 
gL = 2/[(8 + X/2)2 + 2 P ]  + 

In general, if the t, shell in a distorted octahedral or tetrahedral complex 
is incompletely filled (but not if it is exactly half-filled) the observed split- 
ting is much more sensitive to direction than if the odd electron (or hole) 
is in an e orbital. 
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5. Zero-field splittings 
In the previous section we saw that for an ion with one d electron the 

degeneracy of the 2D term is largely lifted by the combined effects of the 
crystal field and spin-orbit coupling, but that there remains a two-fold 
degeneracy in each level which is only removed by an external magnetic 
field. Kramers* showed that this sort of degeneracy always occurs if the 
number of electrons is odd, because in the absence of a magnetic field a 
simultaneous reversal of the spin and orbital angular momenta leaves the 
energy unchanged. When, however, there is an even number of unpaired 
electrons the spin degeneracy of a triplet or quintet level may be removed 
entirely by the crystal field alone. We will now illustrate this effect, known 
as a “zero-field splitting”, by the examples of the ferrate ion FeO!-, the 
octahedrally co-ordinated V3+ ion, and the Mn2+ ion, in turn. 

It is possible to grow single crystals of K,CrO, containing measurable 
amounts of the Fe0;- ion, and the spectrum of such a crystal shows, not a 
single resonance, but two resonance lines when the external magnetic 
field is applied in the crystallographic ab or ac planes.12 Furthermore, the 
position of the resonance lines depends on the direction of the field relative 
to the crystal axes. We now discuss the interpretation of these results. 
Regarding the FeOt- ion as a very strongly perturbed Fe6+ ion, we 
anticipate that its ground state has the electronic configuration 3d2. 
The ion is approximately tetrahedral, and the two 3d electrons will 
occupy the two orbitals of symmetry E, giving a 3A2 state. If the tetrahedral 
symmetry were perfect, the spin degeneracy of this triplet would be 
maintained, but an orthorhombic distortion is observed, which resolves the 
triplet into three components, with electronic spin parallel to the x, y, and 
z axes of the distortion. (These symmetry arguments make it plausible 
that the splitting can occur; why it does occur we shall not discuss here.) 
Two of the axes of the distortion do not coincide with those of the crystal, 
but we shall indicate how the electron-resonance spectrum is determined 
by the directions in which the individual ions distort. 

When discussing the Ti3+ ion we saw that it was possible to describe the 
behaviour of the levels by a spin hamiltonian of the form 

We now seek a corresponding expression for the ferrate ion. In this we are 
guided by two considerations. First, since the effect of an external magnetic 
field would necessarily be isotropic if the ion were perfectly tetrahedral, we 
represent this interaction by the isotropic expression 

Secondly, we must have some anisotropic terms to represent the zero-field 
l2 A. Carrington, D. J. E. Ingram, K. A. K. Lott, D. S. Schonland, and M. C. R. 

Symons, Proc. Roy. SOC., 1960, A ,  254, 101. 



438 QUARTERLY REVIEWS 

splitting, and these cannot involve H. The simplest second-order expression 
which has the same symmetry as the orthorhombic field is 

D , 2  + D , g  + D,?: 
We therefore adopt as our spin hamiltonian the form 

where D,, D,, and D ,  are constants with the dimensions of energy; their 
sum is taken to be zero. The problem is now to see what sort of electron- 
resonance spectrum emerges from such a spin hamiltonian. 

What we must first do is to determine the possible spin states of the 
system and their energies. These are the eigenstates and eigenvalues of the 
spin hamiltonian. We therefore begin by determining the matrix elements of 
&' between the three levels Il), lo), and 1-1) which are defined as 
the eigenstates of S ,  with the eigenvalues Ms = 1 ,  0, -1 respectively. To 
do this we require the matrix elements of the operators S,, S,, S,, Sz, 
Si, and 2;. We have already given expressions for determining the matrix 
elements of the operators S+ and S- and the complete matrices are 

n 

A 

A ~ A A  

A 

n n 

11) 10) 1-1) 

d2 
0 
0 0 

11) 10) 1-1) 

0 
A 

0 
0 

A 

n 

n n 6 A - A  

From the relations S+ = S,  + is,, S- = S, - is,, we see that S, = 

+(g + c) and = - $i(?+ - s?>. Hence we can write down the matrices 
for S,, S,, and g,, remembering that Il>, lo), and I-l} are eigen- 
functions of Zz. These matrices are 

A -  

1 / 4 2  0 
1 / 4 2  0 1 / 4 2  ] [ : 1 / 4 2  0 

$ =  

$ =  

s ^ , =  0 

1 0 - i / d 2  0 
i / 4 2  0 - i /42  

i I 4 2  0 1 
0 
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The matrix elements of the operators @, $, and @ are obtained by 
simply squaring these matrices; the rules for matrix multiplication give 

We are now 
tonian. For 

1-4 0 -k 
1 0 0 

0 0 [ !  0 1 
g j =  

in a position to find the matrix elements of the spin hamil- 
instance, consider the matrix element (1  $? 11). This is . . .  

expanded and evaluated as follows : 

(1 l a l >  = gPWx(1 ICIl> + H,(1 Ell> + Hz(1 Is .̂ l1>1 
+ DX(113 11) + D,(11@ 11) + D,<l I$p> 

= gPfH,.O + H,.O + H z . l ]  + Dx. i  + D,.& + D,.1 
= gSHz + W X  4- D,) + Dz 

The other matrix elements are determined in precisely the same manner. 
The equation for the eigenvalues E and the eigenstates c1 11) + c,, 10) + c - ~  I - 1 )  therefore is 

sBHz +MDx+D,) +a -E, d*gP(Hx -ifGI, Q(Dz -4ll c1 
o= d4gP(Hx+iH,), D,+D,--E, d 4 g S ( H x - i H J ]  [co ] [ 8(DT,-DA -\/*gPWx+iH,) 9 -gPHz+1E-(Dx+D,)+Dz--E c-1 

In principle we can now solve for the energies of the three levels but in 
practice it is better to examine the energies under different limiting condi- 
tions. First we consider the energy levels when no external field is applied. 
Putting H ,  = H ,  = H,  = 0 and expanding the secular determinant as a 
cubic equation in E, we find that the three energies (and the correspond- 
ing states) are 

D ,  + D,  : 0 
Dz + Dx : dHI0 + 1 -  1 ) )  
D ,  + Dl/ : Z/S(Il> - I-  1)) 

Hence we see that the three spin levels have different energies even in zero 
magnetic field. We have determined these energies in terms of constants 
which, as we shall see shortly, are obtained from the behaviour of the 
spectrum in the presence of an external magnetic field. 

Let us now examine the effect of a magnetic field H, applied parallel to . 



440 QUARTERLY REVIEWS 

the z axis ( H ,  = Hv = 0). Returning to the secular equation we see that 
the energy of 10) is unaffected by H ,  whereas the other two energies are 
modified and are obtained by solving a quadratic equation in E. The roots 
of this equation are 

Provided the value of the term 4(gj3H,)2 is large compared with that of 
( D ,  - D J 2 ,  the energies are, to a very good approximation: 

+ gBHz + D ,  + ;(Ox + 0,) + ( D  x - D,>"~SPHZ 
-gBHz + D ,  + B P x  + DY) - (Dz - D,)"8gPHz 

(This approximation is equivalent to that of second-order perturb c? t' ion 
theory.) Making use of the fact that D, + D, + D ,  = 0, and neglecting 
the term (D,  - DJ2/8gPH, we see that the energies and corresponding 
eigenstates are, for large values of H,, 

Now as indicated in section 2 the selection rule for transitions induced 
by an oscillating field perpendicular to the z axis is A M S  = & 1. Hence the 
allowed transitions are, for large H,, 

10) +--+ 11) and 10) t+ 1-1) 

and their energies are, respectively, gPH, + :Dz and gPH, - ill,. 
We now see why two absorption lines are observed for certain orientations 
of the crystal. (Actually the z axis turns out to be parallel to the crystallo- 
graphic a axis for every FeOi- ion in the crystal.) The general way in 
which the level separation varies with H ,  is shown in Fig. 4. We note that 
when the field H ,  is strong compared with the separation D, - D, 
(measured in gauss) the two resonances are separated by an amount 30,. 
It is interesting that transitions between the levels whose asymptotic form 
is 11) and I - 1) are induced by an oscillating field HI cos 2nvt parallel 
to the permanent field H ,  if the latter is not too strong. This is because the 
matrix element of ŝ , between the states dQ( 11) rt 1-1)) is 

A A 

*(l IS, 11) - i{-l Is, 1-1) = &(l-(-l)) = 1 # 0 

If, however, the permanent field becomes very strong, these transitions 
disappear, since S, has no matrix element between the limiting forms of 
these states. 

Our second example is the octahedrally co-ordinated V3+ ion, whose 
ground state would be one in which two electrons occupied tZg orbitals 

A 
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with parallel spins. We say “would be” because in fact the resulting level, 
3Tlg, is orbitally degenerate and distorts in the manner indicated in Fig. 3, 
giving a complex of symmetry Dsd. The 3T,g state therefore splits into a 
3A2 and a 3E component, of which the former is the ground state (see 
Fig. 5).13 

E 

FIG. 4. Magnetic field dependence of levels of a spin triplet exhibiting a zero-field 
splitting. 

Ms= t l  

Ms= 0 
\ q- 

Octahedral Trigonal Spln orbit 
f ie ld  distortion coupling 

FIG. 5. Splitting of the ground state of an octahedrally co-ordinated V3+ ion. 

Spin-orbit coupling further splits the 3A2 level into a non-degenerate 
level with M s  = 0 and a doubly degenerate one with Ms = 1,  where the 
axis of quantisation of zz is the axis of trigonal distortion. This zero-field 
splitting is a good deal larger (about 8 cm.-l)14 than that in FeOf 
(D, = 0.0504 cm.-l, D, = 0.0180 cm.-l). The reason is that the spin-orbit 

l3 M. H. L. Pryce and W. A. Runciman, Discuss. Faraday SOC., 1958,26,34. 
l4 G .  M. Zverev and A. M. Prokorov, J .  Exp. Theor. Phys., 1958, 7 ,  707 (transl. of 

Soviet Phys. English pagination). 
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coupling operates by contaminating the 3A2 sublevels with the 3E sublevels, 
and this effect is large because of the small separation between the 3A2 
and the 3E states; in FeOq2-, by contrast, there are no such low-lying 
excited states. The large zero-field splitting in V3+ makes impracticable the 
observation of electron resonance involving transitions with AMS = 
5 I ; it is possible however to observe weak transitions between the levels 
with Ms = &l under certain rather special conditions.14 

Our third example of a zero-field splitting is that of the 6S (d5) ground 
state of the Mn2+ ion in an octahedral field. We shall not go into details, 
but the splitting arises essentially in the following way. In the free ion 
spin-orbit coupling can mix together states with the same value of J ;  
hence the 6S5,2 state is slightly mixed with 4P5/2, which in turn is con- 
taminated with 2D5/2. But a 2D state is split by an octahedral field for the 
same reason that the degeneracy of the d orbitals is lifted in such a field. 
This splitting reacts back on the 6S5/2 state, and this state consequently 
splits into a doublet and a quartet. The quartet is often found to split 
further into two doublets, as the result of distortion. The effect of an 
external magnetic field on these levels is shown in Fig. 6. The selection 

F r e e  ion Crystal 
f ie ld  

M a g n e t i c  
f icld 

FIG. 6.  Zero-field splitting in the Mn2+ ion, leading to fine structure in the electron- 
?esonance spectrum. 

rules permit the transit.ions indicated and the spectrum consists of five 
lines. This "fine structure" is further complicated by hyperfine structure due 
to interaction with the magnetic moment of the Mn n~c1eus.l~ 

6. Rare-earth ions 
The tervalent rare-earth ions have the electron configuration 1 s22s22p6- 

3s23pe3d104s24p64d104fn5s25p6 where It runs from 0 (Law) to 14 (Lu"+) 
and the paramagnetism thus arises from unpaired 4f electrons. Although 

B. Bleaney and D. J. E. Ingram, Proc. Roy. SOC., 1951, A ,  205, 336. 
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the same perturbations as before must be introduced in order to explain the 
electron-resonance properties of these ions, the relative importance of 
these perturbations is now quite different. The 4f electrons are shielded 
by the outer electrons ; consequently the crystal-field splittings are rather 
small and spin-orbit coupling is the dominant effect reducing the degener- 
acy of the ground state of the free ion. It will be remembered that to obtain 
the energy levels of the Ti3+ ion (which has one 3d electron) we first con- 
sidered the effect of the crystal field in splitting the orbital levels apart, 
and only afterwards examined the effect of spin-orbit coupling in mixing 
levels with different spin and orbital quantum numbers. The situation with 
the rare-earth ions is the reverse, and as an example we consider the theory 
of the Ce3+ ion (with one 4f electron) in some detail. 

The lowest electron configuration of the free Ce3+ ion is 2F ( L  = 3, 
S = 4) which gives rise to a 2F5/2 (J  = 3 - 8 )  and a 2F,/2 (J = 3 + &) 
state, the former being the ground state. The energy separation between 
these two states arises from the spin-orbit coupling &S^which may be 
written in the form 

n A  A n ,-. 
A(E@ = - L2 - S2] = $A[J2 - L2 -S2]. 

For the states 2F5/2 and 2F,/2 J,  L, and S are good quantum numbers, so 
that the expectation values of J2, L2, and ŝ 2 are J(J + l), L(L + l), and 
S(S + 1) respectively. Hence the energy difference is just E(2F,/2) - 
E(2F)512 = *A[7/2(7/2 + 1) - 5/2(5/2 + l)] = (7/2)A, and has been 
found experimentally to have the value + 2,250 cm.-l. 

The simplest approximation that can usefully be made is to suppose that 
the ground state of the Ce3+ ion in the crystal is derived entirely from the 
‘F5/2 level of the free ion.lS If the crystal field has the trigonal symmetry 
Csh or D3h, its effective potential splits the six-fold degenerate 2F5/2 

ground state of the free ion into three Kramers doublets, which turn out to 
be eigenfunctions of the operator?, with eigenvalues j-4, j--, and -J-i 
respectively. We shall not explain in detail why this happens, but merely 
write down the wave functions of the MJ = &h states, which are 

14) = dqqO,*) - . \ /4 /7]I , - i )  
and 1-4) = d 4 ~ ~ - l , + ) - d ~ ~ O , - ~ )  
where the two numbers in each “ket” on the right-hand side are the eigen- 
values ML, Ms of the operators L,, S, .  To calculate gll and g for transi- 
tions between these levels we need the matrix elements of PH,& $- 2gz) 
and + 2s). The diagonal elements of the former are 

P H d - 4  I(L2 + 2 6  1-8) = (--3/7)PHz 

n n  

PK<B @z + 2% 13) = (3/7)PHz 
and 

la R. J. Elliott and K. W. H. Stevens, Proc. Roy. SOC., 1952, A, 215,437. 
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and there are no off-diagonal elements. Hence gll = 6/7 = 0.857. For a 
field applied in the perpendicular direction we have 

( 8  I P K L  + 2% 1-4) = (9/7)Pz = <-B IPKdLh, + 2% 14) 

and this time there are no diagonal elements. Hence gl = 18/7 = 2.571. 
Experimentally it is found1’ that a diluted single crystal of Ce3+ in 

lanthanum ethyl sulphate gives two resonances; one has gll = 0-955, 
g ,  = 2-185, and the other arises from a doublet about 3 cm.-l higher, 
having 811 = 3.72, gl = 0.2. The g values calculated for the MJ = i-; 
doublet are 4.286 and 0 respectively. The situation is illustrated in Fig. 7. 

Free ion Spln orbit  Crys ta l  Magnetic 
coupling field field 

FIG. 7.  Splitting of the ground state of the Ce3+ ion in a field of symmetry D 

The MJ = &: doublet is apparently too high in energy to be appreciably 
populated at the temperatures of measurement. 

In the foregoing paragraphs we have discussed only the very simplest 
rare-earth ion, with one 4f electron, and have applied only the most 
elementary theory to it. A more accurate theory would allow for mixing 
of levels with different J under the influence of the crystal field.16 Never- 
theless, to ignore this effect in the rare earths leads only to a slightly 
inaccurate description, whereas in the transition-metal series it would be 
completely misleading to think of the ions in the crystal field as being in 
eigenstates of 3. 

7. Nuclear hyperfine structure 
As mentioned in section 2, the presence of one or more magnetic nuclei 

in a paramagnetic substance can impart to the electron-resonance spectrum 
a “hyperfine” structure in which each individual line arises from an elec- 

l7 B. Bleaney, Phil. Mug., 1951, 42, 441. 
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tronic transition in which the nuclear spin (or spins) remains oriented in a 
particular direction. If there is one magnetic nucleus, with spin magnitude 
f, one may observe (21 + 1) hyperfine components since MI, the eigen- 
value of 6, can take any one of the (21 + 1) values - I ,  - I -+ 1,  
. . . , + I. These components are usually of equal intensity, and equally 
spaced. The magnitude of the spacing depends on two factors, (i) the 
resultant magnetic field and (ii) the electron spin density, at the given 
nucleus. These effects need separate discussion. 

The magnetic field experienced by a nucleus arises from the spin and 
orbital angular momentum of the electrons revolving in its neighbourhood, 
the direct contribution of the external magnetic field being usually 
negligible. The contribution of a particular electron falls off inversely as 
the cube of its distance from the nucleus, so that electrons which do not 
get into the valency shell of an atom have a negligible effect on its nucleus. 
Another feature of this interaction is its directional character; for a given 
electronic level its average over all orientations of the molecule is zero. 
(This is why this particular interaction need not be considered in inter- 
preting the electron-resonance spectra of paramagnetic species in liquid 
solution.) 

The other factor determining the hyperfine spacing is the unbalance of 
electron spin in the immediate neighbourhood of the nucleus. This 
is the so-called Fermi contact interaction, and can arise only if some 
unpaired spin finds its way into s orbitals of the atom, because orbitals 
of pure p, d, and f type have vanishing amplitudes at the nucleus. When 
an external field is applied in a given direction, the spin of the electrons 
tends to become aligned in one of (2s + 1) directions (though spin- 
orbit coupling will partly upset this alignment), and the average direction 
of the electron spin near the nucleus will determine the axis of 
quantisation of the nuclear spin I. 

It may be noted that as far as any nucleus is concerned the effect of the 
external field is only to determine the manner in which the electrons move 
in its neighbourhood; the magnitude of the hyperfine spacing does not, 
therefore? depend on the strength of the external field but only on its 
direction (though in certain special circumstances this statement needs 
modification). 

We have already mentioned briefly one situation in which the nuclear 
spin enters the hamiltonian for a paramagnetic substance; in section 2 
we showed that the spin hamiltoniait for the hydrogen atom could be 
written as 

n 

and that the last term was negligible. Later we showed that, when allow- 
ance was made for the coupling between S and the orbital angular momen- 

A 

9 
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n 

tum L, the spin hamiltonian for an axially symmetrical system (excluding 
I’, could be written as 
A 

gls(H3cK + H,$ + g1,BHzK 

where gl and gll were not necessarily equal to one another or to 2.0023, 
the value for a free electron. These observations lead us to expect that in a 
situation in which both EandTenter the full hamiltonian it may still be 
possible to describe the spin-resonance properties of an axially sym- 
metrical system by an effective hamiltonian of the form 

&B(H,E + HYK) + 811 PHZK + A,($2 3- KG + A ll~;z 
This expression, suggested by analogy, can be justified by detailed analysis 
provided the direct effect of H on the nucleus can be neglected and pro- 
vided also that the nucleus has no quadrupole moment. (Terms in S& 
If:, etc., are also assumed to be negligible.) The eigenvalues of this effec- 
tive hamiltonian can be found by methods similar to those already out- 
lined.2 For example, if the field H is in the z direction, the spin hamiltonian 
becomes 

gll/3Hzgz + A l , z z E  + +Al(KZ + cc) 

A 

A A A  A A A  

where I +  = I,  + iIy and I- = I ,  - iIy. These operators operate on the 
nuclear spin states in precisely the same manner as the operators S+ and 

A 

A 

S- operate on the electronic spin states. For an electronic doublet (Ms = 
5 4 )  and a nucleus of spin i (MI  = &&), the matrix of the above hamil- 
tonian within the set of states IMS,Mj) is 

1898) 14, -9 I -Q, 8) I - & ,  -3) 

1 4gllmz+MI, 0 0 0 
I Z s l l P H Z  - *All &A1 0 

-4grlBHZ-aAIl 0 
0 - 4gllrBH~faAll 

M l  
0 

of which the eigenvalues are &4 It higll PITz and --&f 11 -J-d[(&gll 
+(8AJ2]1; when A,<g,l the eigenvalues are therefore close to 
*&A 11 &$tg11 PHz, as asserted in section 2. 

8. Electron delocalisation 
So far our discussion of transition-metal compounds has been based on 

the implicit assumption that the unpaired electrons are localised entirely 
in the valency shell of the metal ion. In reality, the unpaired electrons may 
be partly delocalised on to the ligands, or the ligand electrons may be 
partially delocalised into the metal orbitals. Electron resonance provides a 
sensitive method for the study of this effect,l8*l9 as we shall now explain. 

l8 K. W. H. Stevens, Proc. Roy. SOC., 1953, A ,  219, 542. 
l9 J. Owen, Discuss. Faraday SOC., 1955, 19, 127. 
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A quantitative definition of electron delocalisation may be obtained 
from the molecular-orbital theory, as follows. If 4 is one of the d orbitals of 
the metal, and x is a combination of ligand orbitals having the same 
symmetry as 4, then a molecular orbital of the combined ion will have 
the form 

45 3- ax * = (1 + 2aa + a2) 

where a is the overlap integral between4 and x; a then measures the extent 
of delocalisation of an unpaired electron in the orbital +. Estimates of 01 

can be obtained in several ways, namely : 
(a) From the g values. A convenient example is the IrCli- ion (t2g5), 

whose electron-resonance spectrum can be observed in dilute solution in 
the diamagnetic crystal K2PtC1,.20 The orbital of the “unpaired hole’’ 
is a d orbital of type t2g, which can overlap r-wise with a suitable combina- 
tion of C13pr orbitals. It has been shown that for a = 0, when distortions 
of the ion are neglected, one should obtain an isotropic g value of 2, where- 
as for a very large the g value would be isotropic with the value 4/3. The 
actual value is 1.8, indicating1* that a2/(1 + 2aa + a2) lies between 0 and 
0.3. Roughly then, the extent of delocalisation az must be about 15 %. 

It has been shownz1 that o-bonding also results in a reduction of the g 
values. In the hydrated Ni2+ ion, for example, the (isotropic) g value should 
be 

where h is the cg coupling constant of the bound ion, d is the crystal 
field splitting of the 3d orbitals and overlap has been neglected. Un- 
fortunately this formula cannot be used to obtain a very accurate estimate 
of a2, since h is known less accurately for the bound ion than for the free 
ion. 

(b) From ligand hyperfine structure. An example of this is the electron- 
resonance spectrum of IrCli-, where electron transfer is revealed very 
directly by the appearance of chlorine hyperfine structure, superimposed 
upon the quartet hyperfine structure due to the iridium nucleus.20 This 
phenomenon, like the reduced g value, is clearly due to partial transfer of 
C13pn electrons into the tZg “hole” on the metal ion, resulting in a transfer 
of unbalanced spin in the opposite direction. For an arbitrary orientation 
of the IrC1;- octahedron in the external magnetic field the C1 hyperfine 
structure is rather complicated, but if the field is applied along a C1-Ir-C1 
axis the two C1 nuclei on the axis split each Ir hyperfine line into a septet, 
whose spacing depends on a2 and on the mean value of r3 for an electron 

2o J. H. E. Grfiths, J. Owen and I. M. Ward, Proc. Roy. SOC., 1953, A,  219, 526. 
21 M. Tinkham, Proc. Roy. SOC., 1956, A, 236, 535, 549. 
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in a 3pn C1 orbital. The value of a2 obtained from the septet spacing is 
approximately 0.26, overlap being neglected. 

(c) From reduced metal hyperfine structure. It is natural to suppose that 
delocalisation of the magnetic electrons on to the ligands will result in 
decreased interaction with the metal nucleus.22 An example is the 
Cu(H20)i+ ion, where transfer of electrons from the H,O molecules into 
the eg “hole” in the valency shell of the metal ion reduces the unpaired 
spin density in the neighbourhood of the Cu nucleus. Thus the Cu hyper- 
fine spacing is appreciably smaller than would be expected from a calcula- 
tion in which a is set equal to zero. 

Many other examples of these three effects have been found experi- 
mentally. 

9. Exchange interaction 
An important phenomenon which can be studied by electron-resonance 

methods is electron exchange between two paramagnetic ions in a crystal. 
This type of interaction has been in salts of the IrCli- ion, the 
technique being to grow crystals in which 95 % of the Ir atoms are replaced 
by diamagnetic Pt atoms. In these crystals there is an appreciable. number 
of nearest-neighbour pairs of Ir ions which have no other Ir neighbours. 
The structure of such a nearest-neighbour pair can be represented dia- 
grammatically thus : 

Tr 
- \ 

. . . Cl/ 
Ir 

We have already discussed the electron transfer which occurs in the 
1rCl:- ion. The 3pr electrons of the Cl- ions spend 5 % of their time on the 
Ir4+ ions and there is thus a certain definite probability of finding two 
chlorine atoms in neighbouring positions with spins either parallel or 
antiparallel; in the latter case we may think of an elongated Cl, “molecule”. 
The resulting energy levels are a triplet (S = 1) at i K  - gPH, BK, &K + 
gPH, and a singlet at - iK, where Ki s  the C1-Cl exchange energy, and 
one observes an electron-resonance spectrum arising from transitions 
between the levels of the triplet. The intensity of these transitions decreases 
as the temperature is lowered, indicating thermal depopulation of the 
triplet level. Thus the triplet lies above the singlet and the exchange is 
said to be antiferromagnetic. 

Equally interesting examples of exchange coupling are found in some 
copper salts. In copper acetate2* the fine structure of the spectrum is 

22 B. Bleaney, K. D. Bowers and M. H. L. Pryce, Pruc. Roy. Suc., 1955, A ,  228, 166. 

** B. Bleaney and K. D. Bowers, Pruc. Roy. SOC., 1952, A ,  214,451. 
J. Owen, Discuss. Furuday Suc., 1958, 26, 53. 
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characteristic of a triplet spin state and, in addition, the hyperfine structure 
shows that the odd electrons interact with two equivalent copper nuclei. 
This indicates that the copper ions interact strongly in pairs through 
exchange forces, each pair forming a paramagnetic triplet spin state and a 
lower diamagnetic singlet spin state. The nuclear spins of the two stable 
copper isotopes are both 3/2 and their magnetic moments are so close that, 
except under conditions of very high resolution, only one set of hyperfine 
lines is expected. This will normally consist of four lines with equal 
spacing and intensity. It is easy to show that two equivalent copper 
nuclei will give rise to seven lines with relative intensities 1 : 2 : 3 : 4 : 3 : 2 : 1 
and this is just what is observed for copper acetate. The intensity of the 
electron-resonance spectrum again decreases as the temperature is 
lowered. 

It is interesting to note that the deduction that the copper ions form 
isolated pairs was subsequently confirmed by X-ray crystallography; 
the Cu-Cu distance was found to be 2-6A. 

10. Univalent transition-metal ions 
An interesting and recent development is the detection and study of some 

unipositive transition-metal ions, formed by irradiation of the bivalent 
ions present as impurities in single crystals such as NaF. We can best 
describe this by referring to one or two specific examples.25 

Crystals of NaF to which Cr3+ has been added do not show resonance 
down to 20°K. This can be understood if the chromium is present as 
Cr2+; this ion, with an even number of unpaired electrons, might well not 
show resonance because of a large zero-field splitting of the spin quintet. 
However, on irradiation with y-rays, X-rays, or high-energy electrons an 
isotropic spectrum appears, whose fine structure is characteristic of a 
6S ground state. As in the spectrum of Mn2+(3d5, %), metal hyperfine 
structure is observed but is found to arise from a nucleus with spin 3/2, 
which is the spin of 53Cr. There is thus very good evidence that the spectrum 
observed is due to Cr+ (3d5). 

Similarly when crystals of NaF containing Fe2+ ions are irradiated, a 
resonance line appears at 20°K with a g value of 4.344. This g value is very 
close to that observed for Co2+ in MgO crystals (4.278). However, the 
line observed is not due to the presence of cobalt as an impurity since the 
hyperfine structure characteristic of that metal is absent. The obvious 
conclusion is that it is due to Fe+ (3d7) which is isoelectronic with Co2+ 
(3d7, *F), but has no nuclear spin. 

The Table summarises some of the available data for transition-metal- 
ion impurities in NaF and MgO, both of which have the NaCl crystal 
structure. While the g values are, in general, extremely sensitive to the 
local structure of the crystal, the results quoted have been chosen because 

2s W. Hayes, Discuss. Faraday Soc., 1958,26, 58. 
5* 
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d6 

d7 

d8 

d9 

No. of d Ion Temp. (K) g Value 
electrons 

d5 Mn2+( Na F) Room temp. 2-00 & 0.01 
Mnw(Mg0) 9 ,  2-00 14 
Few(Mg0) 9 9  2.0037 
Crt(NaF) 9 ,  2.000 
Fez+( MgO) 4” 3.428 
Mn+(NaF) Resonance not observed down to 2 0 ” ~ ,  but 

intensity of Mn2+ spectrum decreases by 
90% on irradiation 

Coz+(MgO) 20” 4.278 
Co2+(NaF) 20 g, = 4.3 

g, = 3.3 
g, = 5.7 

Fe+(MgO) 20 4.15 

Niw(Mg0) 77 2.227 
Co+( N a F) 90 2.3 1 
Cu2+(Mg0 powder) 2.190 
Ni+(NaF) 20 811 = 2.766, 

Fe+( NaF) 20 4.344 

gL = 2.114 

they refer to ions which probably have similar crystal environments. In 
these circumstances the g values provide strong evidence for the existence 
of the Crt, Fe+, Co+, and Ni+ ions in the irradiated crystals. 

11. The investigation of crystal structures 
It will by now be apparent that the electron-resonance spectrum of a 

compound is largely determined by its crystal structure. In some cases 
important features of an unknown crystal structure can be inferred from 
the electron-resonance spectrum. We have already quoted cupric acetate 
as a case in point, and another good example is provided by recent work 
on hzemoglobin and myoglobin and some of their derivatives.1° In these 
substances the electron-resonance spectrum arises entirely from the co- 
ordinated iron atoms, so that the hzem groups can be studied without inter- 
ference from the rest of the molecule. Fig. 8 represents the structure of 
one of the haem units. The iron atom is centrally placed between the four 
nitrogen atoms; the hzm group is linked to the rest of the molecule through 
a fifth co-ordination point and various other groups can be attached at the 
sixth position (R). In the case of the “acid-met” derivative this position is 
occupied by a water molecule and Fig. 8 shows that the line joining the 
water molecule to the iron atom is an axis of local symmetry. 

What one actually observes in studying “type A” myoglobin crystals is a 
pair of resonance lines whose g values depend differently upon the crystal 
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orientation. Each line has a minimum g value of 2.0 for one particular 
crystal orientation, and a maximum g value of 6.0 for any perpendicular 
orientation. This clearly indicates the presence of two hzem groups in the 
unit cell, and the directions of minimum g value for the two groups may 

R 

Globin  

FIG. 8. Immediate environment of an iron atom in hamoglobin. 

be identified with the Fe-R directions. The orientations of the ha=m 
groups in myoglobin and in hzmoglobin were thus determined, relatively 
to the crystallographic axes, within an accuracy of 2" by electron resonance, 
before the recent comprehensive X-ray studies of these molecules had 
been completed. 

12. Line widths 
For a crystal in a perfectly uniform magnetic field, subjected to weak 

monochromatic microwave radiation, there are two main sources of line 
broadening, namely, spin-lattice and spin-spin interaction. 

Spin-lattice interaction is the means whereby the magnetic energy of 
the paramagnetic ions is transferred to the vibrational degrees of freedom 
of the lattice. We have already seen that it is the spins of the electrons that 
mainly give rise to the magnetic energy; hence spin-lattice relaxation 
requires some kind of coupling between the electron spins and the varying 
electrostatic field due to the lattice motions. This coupling is none other 
than the spin-orbit interaction already discussed at some length. 

If spin-lattice relaxation were the only source of line broadening, one 
would obtain a line of half-width -(27rT)-l cycles where T is the relaxation 
time for transfer of energy from the spin system to the lattice. The magni- 
tude of T is sensitive to two factors. First for a given substance T depends 
on the temperature, since as the temperature is raised the violence of the 
interatomic motion increases and the relaxation time is consequently 
shortened. Secondly, if we are comparing different substances, r will 
depend on the sensitivity of the g value to the geometry of the ionic 
environment. Thus Mn2+ has a long spin-lattice relaxation time, whereas 
the octahedrally co-ordinated Ti* ion, whose g values are sensitive to 
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small distortions, has a very much smaller value of r and only gives sharp 
lines at low temperatures. The sensitivity of the magnetic levels to the 
environment will, in general, be greater the smaller the excitation energy 
to higher magnetic states; hence line widths will, in general, be greater 
if there are low-lying excited states. 

The other source of line broadening is direct interaction between 
different paramagnetic units. This is, of course, very small in paramagnetic- 
ally dilute crystals, but becomes important in undiluted paramagnetic 
materials. There are two main mechanisms of spin-spin interaction; one 
is the direct dipole-dipole interaction between ions regarded as fixed 
bar magnets, and the other is exchange coupling of the electron spins, 
possibly mediated by intervening atoms (see section 9). Both mechanisms 
have the effect of replacing each N-fold degenerate state of a group of N 
independent ions by a set of N states differing slightly in energy. The result 
is that the various excitation energies are no longer exactly equal, and 
resonance is obtained over a range of magnetic fields. If the ions are non- 
equivalent, each resonance line is visibly broadened ; if they are equivalent 
the line appears quite sharp (“exchange narrowing”) but its fourth moment 
is actually greater than it would be if there were no exchange coupling. 

It should be noted that varying the temperature has no effect upon 
spin-spin broadening, since the motion of the lattice does not alter 
significantly the distances between neighbouring ions. 

One can, of course, study line widths with a view to evaluating spin- 
lattice relaxation times or spin-spin coupling constants. On the whole, 
however, the broadening of resonance lines is something that one tries to 
avoid experimentally, and this is best done by working with paramagnetic- 
ally dilute crystals at low temperatures. 




